Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

نویسندگان

  • Qin Yu
  • Adam Jalaludin
  • Heping Han
  • Ming Chen
  • R Douglas Sammons
  • Stephen B Powles
چکیده

Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glyphosate-Resistant Goosegrass from Mississippi

A suspected glyphosate-resistant goosegrass [Eleusine indica (L.) Gaertn.] population, found in Washington County, Mississippi, was studied to determine the level of resistance and whether the resistance was due to a point mutation, as was previously identified in a Malaysian population. Whole plant dose response assays indicated a twoto four-fold increase in resistance to glyphosate. Leaf disc...

متن کامل

Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase.

The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A compariso...

متن کامل

Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene

Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...

متن کامل

Identification of a glyphosate-resistant mutant of rice 5-enolpyruvylshikimate 3-phosphate synthase using a directed evolution strategy.

5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) is a key enzyme in the shikimate pathway and is targeted by the wide-spectrum herbicide glyphosate. Here, we describe the use of a selection system based on directed evolution to select glyphosate-resistant mutants of EPSPS. Using this system, the rice (Oryza sativa) EPSPS gene, mutagenized by Error-Prone polymerase chain reaction, was introdu...

متن کامل

Amino acid Substitution Mutations Analysis of gyrA and parC Genes in Clonal Lineage of Klebsiella pneumoniae conferring High-Level Quinolone Resistance

Background: Emergence Klebsiella pneumoniae resistant to quinolone antibiotics due to mutations in gyrA and parC genes created problem for treatment of patients in different hospitals in Iran. The objective of this study was to determine the amino acid substitutions of GyrA and ParC proteins in certain clonal lineages of the K. pneumoniae conferring high level quinolone resistance. Methods: One...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 167 4  شماره 

صفحات  -

تاریخ انتشار 2015